
COMPUTATIONAL APPLICATIONS
TO POLICY AND STRATEGY (CAPS)

Leo Klenner, Henry Fung, Cory Combs

Session 3 – Decision Trees, Random Forests, and Gradient Boosting

1. Model Evaluation

2. Case Study

3. Decision Tree models

4. Bootstrap Aggregation (Bagging)

5. Bagged Trees

6. Random Forests

7. Gradient Boosting

Outline

CAPS – Session 3 –Tree-based Models 1

Big-picture Goal:

Look at the details of several tree-based models
and discuss the pros and cons of each. Introduce
several considerations for model selection.

2.1 How to use decision tree models to make predictions

CAPS – Session 3 –Tree-based Models 2

• Problem: Predict student test scores from the student’s family income and the his/her home-school
distance.

• Response (dependent variable): Test score

• Predictors (independent variables): Family income, Distance between home and school

• Data: I have 10,000 student records that I use as the training dataset, and I have 1000 student records
(with unknown test scores) that I use as the test dataset.

• Using the training dataset, we trained a decision tree model: essentially a series of rules that splits the
predictor space into smaller regions.

• Suppose we have a test observation (a student called “Cory” that do not belong in the training dataset).
Using the trained decision tree model, we want to predict Cory’s test score, given has family income and
home-school distance.

• What is the predicted test score of Cory? What is the residual? What is the test error of the 1000 test
dataset (MSE)?

2.2 Fact sheet on the Decision Tree Model

CAPS – Session 3 –Tree-based Models 3

2.3 Bias-Variance Tradeoff

CAPS – Session 3 –Tree-based Models 4

• Key: We are not interested in building a model that make accurate predictions (have low training error)
on the training data (we have the actual response values already for the training data!). Instead we
want the model to make accurate predictions (low test error) on the test observations.

• Suppose we have a highly nonlinear model (a 5th order model) that fits the training data really well. This
model will have low training error (low bias). However, it has high variance since a small change in the
training dataset will result in a completely different model (a different curve). This model also tends to
have a large test error since it cannot be generalized to test data.

• In contrast, a linear model has high bias, but low variance– if a different training dataset is used, the
change in the linear model will be relatively small (the slope will only flatten or steepen).

• Goal: we want the best of both worlds: a model that has low bias and low variance so that its test error
will be low (it will be useful in predicting the response of test observations).

2.4 Bagging I: Problem

CAPS – Session 2 – Supervised Learning 5

• Fact: the variance of the average of a large set of independent random variables is smaller than each
individual random variable.

• Problem: I want to predict test score from students’ family income and IQ score.

• Ideal case:
• I have 10,000 student records (test score, family income, IQ score) from 400 schools.

• I build 400 decision tree models using the 400 independent sets of student record. I allow the trees to grow deeply to get a
low bias. I end up with 400 low-bias but high variance decision trees.

• Given the family income and IQ score of a student called “Leo”. I make 400 predictions of his test score using 400 trained
decision tree models.

• To reduce variance of the prediction, I take the average of the 400 predicted test scores to get a final low bias and low
variance predicted test score of Leo.

• Question: what happens if I don’t have 400 datasets? Due to time/cost, I can only collect 10,000
student records from a single school.

2.5 Bagging II: Bootstrapping

CAPS – Session 3 –Tree-based Models 6

• Answer: We use a technique called bootstrap.

• I have a single dataset of 10,000 student records. I can artificially generate 399 additional datasets using
“sampling with replacement”.

• We can think of my 10,000 student records as a bag of balls. I take a ball out of the bag and record its
test score, family income, and IQ score. Then I put the ball back into the bag.

• I pick another ball out of the bag and record its information. I repeat this process until I have 399
“bootstrapped” samples. The sample will NOT contain unique student records (some balls will get
picked multiple times). The idea is that the bootstrapped samples can approximate student records that
I would have gotten had I collected data from 399 other schools.

2.6 Bagging III: Bagged Trees

CAPS – Session 3 –Tree-based Models 7

• Armed with 400 bootstrapped datasets, we can build 400 “deep” decision tree models (we call
these “bagged trees”).

• As before, using the bagged trees, we make 400 predictions of the test score of Leo. Finally, we get
a final low-bias, low-variance predicted test score by taking the average of the 400 predicted test
scores.

• Problem with bagged trees: if we have n independent random variables, we can get a small
variance if we take their average. What happens if the random variables are not independent?
Let’s look at the case of n = 2.

• Question: are the bagged trees independent?

• Answer: no, since the bagged trees are generated from bootstrapped data from the original
dataset, I expect these datasets to be similar and therefore, the trained decision tree models
should also be similar.

• Example: if IQ score is an important predictor of test score, then it will be selected frequently by
the algorithm when we do splitting (since it reduces the sum of square error by a lot). In fact,
since IQ is so important, it will probably be the first predictor (first node) selected in ALL 400
bagged trees. Thus, the 400 bagged trees are highly correlated.

2.7 Random Forests

CAPS – Session 3 –Tree-based Models 8

• We can reduce the variance of our model if we can somehow decorrelate the bagged trees. This is
exactly what Random Forests do.

• To build a Random Forest model, we follow almost the exact process as the bagged trees, with the
following exception:
• We ONLY consider m out of p predictors whenever we make a splitting decision.

• For example, let’s say my predictors are: Family income, parent’s education, home-school distance,
student-teacher ratio, IQ score.

• Whenever I make a splitting decision, I only randomly consider 3 out of 5 predictors (ex: family income,
parent’s education, and student-teacher ratio). Therefore, even though IQ score is an important
predictor, it will not be considered at every split decisions. For this reason, each bagged tree will look
slightly different and be less correlated.

• Since the bagged trees are less correlated, my final predicted test score will have even less variance and
less test error.

2.8 Test error of Bagged Trees vs Random Forest

CAPS – Session 3 –Tree-based Models 9

Figure 1: Comparison of the test error between bagging and Random Forest [1]

2.9 Fact sheet of Random Forests

CAPS – Session 3 –Tree-based Models 10

2.10 Gradient Boosting

CAPS – Session 3 –Tree-based Models 11

• Like bagging, boosting is an approach that can be applied to many statistical learning methods to
improve their performance. The main idea is that boosting allow the models to “learn from its past
errors”.

• Like bagging, a series of models are built. However, in boosting, each model takes into account the error
from the previous model. Thus, error is reduced sequentially.

• Boosting is an example of “Ensemble Modelling” in which a set of “weak learners” are combined to
form a “strong learner”.

• This is similar to a rope: it is compose of many “weak threads” that becomes “strong” when combined
together.

2.11 Fact sheet of Gradient Boosting

CAPS – Session 3 –Tree-based Models 12

2.12 Details of Gradient Boosting I

CAPS – Session 3 –Tree-based Models 13

• Given a dataset (test score, family income, home-school distance) of 5 students, I fit a decision tree model
and get the following results:

• Next, we build another decision model (Model # 2), using family income as the predictor and the residual of
Model # 1 (instead of test score) as the response variable.

Student ID Actual Test Score Model # 1 Predicted
Test Score

Model # 1 Residual

1 87 85 2

2 75 85 -10

3 50 40 10

4 70 65 5

5 80 85 -5

2.13 Details of Gradient Boosting II

• Why? Suppose Model # 2 exactly
predicts the residuals. In this case, the
predicted response values of Model #2
equals to the residuals of Model #1.

• If that’s the case, then I can aggregate
Model #1 and Model #2 by summing
their respective response values to get a
final predicted test score.

• Since I model the residuals of Model # 1
exactly, my final predicted test score will
be equal to the actual test score (and I
will have zero residual).

CAPS – Session 3 –Tree-based Models 14

Student
ID

Actual
Test Score

Model #
1
Predicted
Test
Score

Model #
1
Residual

Model #
2
Predicted
Response
Value

Model 2
Residual

1 87 85 2 2 0

2 75 85 -10 -10 0

3 50 40 10 10 0

4 70 65 5 5 0

5 80 85 -5 -5 0

2.14 Details of Gradient Boosting III

• In reality, this is rarely the case, I will have
differences between the residuals of Model
#1 and the predicted response values of
Model #2. In this case, I need to do two
things:
• Update the total predicted response

value.
• Update the residuals.

• I will build another decision tree model
(Model # 3) to model the residuals of
Model #2.

• I will continue this process k times (k is
specified by the user).

• In the end, my final predicted test score
would be the sum of the predicted
response variables of models 1… k, and the
residuals will be reduced incrementally.

15CAPS – Session 3 –Tree-based Models

References

CAPS – Session 3 –Tree-based Models 16

• [1] Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshiranai, An introduction to Statistical
Learning, Springer Science + Media, 2013.

