
CAPS Notes - Lecture 4
Model Deployment Evaluation

Leo Klenner, Henry Fung, Cory Combs

Last updated: 11/18/2019

Overview

In this session, we have two broad goals:

understand the importance and challenges of auditing an algorithm once it has been
deployed into the real world,
grasp foundational aspects of reinforcement learning, a machine learning technique
concerned with enabling agents to select optimal actions in an uncertain environment.
Reinforcement learning often requires strong model deployment evaluation to mitigate
against specific performance trade-offs.

We will start with a case that connects both of these themes:

an investigation of the Wall Street Journal into Google's search algorithms, specifically into
how Google handles auto-complete suggestions.

How does this case combine audits and reinforcement learning?

Audits:

In its investigation, the Journal wants to test if Google interferes with how its algorithms
handle auto-completes for sensitive topics; specifically, the Journal wants to identify if the
algorithms contain human-created blacklists of certain auto-complete suggestions (like "is
dumb") for certain input search terms (like "").
The Journal wants to audit Google's algorithms to find evidence of human interference with
how the algorithms handle auto-completes and present search results to users.

Reinforcement learning:

What technique makes auto-complete suggestions possible? Auto-complete suggestions are
enabled through a version of Markov chains. Markov chains are sequence models, meaning
they constitute a probabilistic model of a sequence of transitions from one state (like "") to
another state (like "is dumb").
A concept closely related to Markov chains, Markov processes, constitutes the foundation
of reinforcement learning. We will introduce the basics of reinforcement learning and then
look at a simple reinforcement learning framework called multi-armed bandits that powers
recommender systems. Recommender systems perform a function very similar to auto-
complete suggestions.

There's another theme present in the case that we want to parse out, the design of interactions
between humans and algorithms to create controlled decision-making processes. We refer to this
design as human-in-the-loop learning, which has become a prominent framework for
controlling reinforcement learners.

af://n2
http://%20https//www.wsj.com/articles/how-google-interferes-with-its-search-algorithms-and-changes-your-results-11573823753

 Interpretable Not interpretable

Access to the code Easy Difficult

No access to the code Difficult Hard

Human-in-the-loop learning:

According to the Wall Street Journal, Google uses humans in two ways to control its search
algorithms:

Google employees can blacklist certain auto-complete suggestions
Google contractors review the rankings of search results and re-rank them based on a
set of factors; the aggregated re-ranked results are then used to inform Google's search
algorithms

Interventions into the autonomous learning of algorithms are the idea behind human-in-
the-loop learning. Providing algorithms with expert advice in the form of a human that can
interfere with the (learning) loop of the algorithm brings with it benefits (robustness, faster
learning, etc.) but also bears the risk of adding bias. We will conclude today by discussing
human-in-the loop reinforcement learning.

1 Auditing Algorithms

Algorithms make decisions that impact humans, from search algorithms to navigation to other
domains. Understanding how these algorithms work and ensuring their alignment with human
values is critical. Those tasks are the concern of "algorithm auditing", a fast emerging field.

A recent article on the topic of bias in algorithms, featured a quote from the CEO of Primer, an AI
company:

Primer's Chief executive, Sean Gourley, said vetting the behavior of this new technology
would become so important, it will spawn a whole new industry, where companies pay
specialists to audit their algorithms for all kinds of bias and other unexpected behavior.

"This is probably a billion-dollar industry," he said.

What are the core challenges that these specialists who audit algorithms may face? Three
challenges come to mind:

lack of interpretability of algorithms
lack of access to the algorithms' code, or "inside"

We can summarize these challenges in the following table that states the levels of difficulty of an
audit:

These challenges can be divided between cooperative and non-cooperative environments.
Auditing in a cooperative environment, where the developer of the algorithm grants access to the
code, is relatively straightforward compared to audits in non-cooperative environments.

Auditing in Non-Cooperative Environments

We can easily think of scenarios where there is interest from the public or another stakeholder to
audit algorithms developed by an entity (company, organization, or state) that has no interest in
revealing the code of the algorithms (ie. for reasons of competitiveness).

af://n38
http://%20https//www.nytimes.com/2019/11/11/technology/artificial-intelligence-bias.html
http://%20https//primer.ai/
af://n66

This in fact often the case, for instance the Wall Street Journal did not receive access to the code
of Google's search algorithms to perform its audit. Therefore, a core problem for auditing
algorithms is working with the algorithm's observed behavior, or "outside".

Observed Behavior

Working with the "outside" of an algorithm presents the following challenges:

methods of inquiry into the algorithm are inherently fuzzy,
as a consequence, results of the audit will not be definitive but imperfect,
this means judgements about the algorithm have to be made based on imperfect
information

What are the fuzzy methods of inquiry available to us? To audit algorithms in non-cooperative
environments, we are constrained to black-box testing.

Black-Box Testing

Black-box testing is comprised of one core step:

sending inputs to the algorithm and analyzing the corresponding outputs

This means we're simulating how users would interact with the algorithm. Although this seems
simple, black-box testing can provide valuable insights into what an algorithm does and how it
might work.

Often, once we have collected a set of input-output pairs from the algorithm that we want to
audit, we can compare those to other algorithms and, through analyzing the differences between
input-output pairs, further narrow down how the algorithm works.

One of the challenges with black-box testing is how we interpret the results of the test. This
challenge is what we'll discuss next in the case of the Wall Street Journal's investigation into
Google's search algorithms.

2 Case: Auditing Google's Search Algorithms

The case is based on the Wall Street Journal's investigation into Google's search algorithms, "How
Google Interferes with its Search Algorithms and Changes Your Results".

You can find the case here.

3 Auto-Completion and Recommendation

Overview

example of simple black-box test

we want to audit the algorithm MathOp that takes two numbers (x, y) as input

and

performs an unknown mathematical operation on them

MathOp(3, 3)

6 # operation could be x + y or x + 3, or multiple other alternatives

MathOp(3, 2)

5 # operation seems like x + y

MathOp(1, 0)

Error # unclear what the source of the error is, needs further investigation

af://n69
af://n79
af://n88
http://%20https//www.wsj.com/articles/how-google-interferes-with-its-search-algorithms-and-changes-your-results-11573823753
http://%20https//capsseminar.github.io/static/Case4.pdf
af://n91
af://n92

One of the functionalities that is at the core of the Journal's investigation into Google is auto-
completion.

How do auto-completion algorithms work?

A user provides the beginning of a search query and the auto-complete algorithm provides
the user with a number of suggested alternatives for completing the query

Before we think about solving this problem, let's consider a second, related problem,
recommendations. We receive recommendations everywhere online (movies, items, etc.)

How do recommender algorithms work?

A user makes a choice among alternatives (movies, items, etc.) and, based on features of the
choice, the recommender algorithm generates new alternatives for the user

Formalization

To gain a better understanding of the problems and think about how we can solve them, we need
to give the problems a formal structure.

In our case, both cases are similar and can be formalized with the same structure. What we'll do
though is formalize each problem differently. We'll frame:

auto-completion as a problem of sequential probabilistic state transitions
recommendation as a problem of optimal action selection under uncertainty

Note, that each problem could be formalized either as sequential probabilistic state transitions or
optimal action selection under uncertainty.

We'll start with auto-completion and then turn to recommendation.

Sequential Probabilistic State Transitions

Here, we formalize auto-completion. Consider the following sentences as our training data:

"I like policy"
"I like strategy"
"I love computation"

Our task is to perform auto-completion based on this data. How can we formalize the problem?

We can formalize the problem as sequential probabilistic state transitions, for example:

given the state "I", what is the probability that the next word will be "like"?

af://n186
af://n214

Figure 1. State tranisition diagram for our sample data

This graph of conditional probabilities is a sparse form of a Markov chain, which is a sequential
model of probabilistic state transitions. There are three states in this chain: state 1 is "I", state 2 is
either "like" or "love", state 3 is either "policy", "strategy", or "computation".

In this model, the Markov property holds:

the probability of being in a next state depends only on the previous state, not on the states
before that.

The Markov property might not seem intuitive but if you consider how we calculate conditional
probabilities, ie. P(state 3 | state 2), it makes sense to say assume that the probability of being in
a next state depends only on the previous state and not the ones before that.

Putting this together as auto-completion, if we had recommend only one word after the user has
typed "I", we would recommend "like" its probability of occurring after "I" in our training data is
higher than for "love".

Concepts to remember: state, state transition, state transition probabilities, Markov
property

Optimal Action Selection Under Uncertainty

Here, we formalize recommendation. Let's review the example of movie recommendations as
optimal action selection under uncertainty:

Actions: We have a set of actions, the movies we can recommend to the user ("we" refers to
the algorithm, or agent, that performs the recommendations in an environment, say the
user's Netflix account).
Goal: Our goal is to recommend movies that the user will watch.
Reward: We keep track of our goal by issuing a reward of 1 if a movie that we recommended
is watched and a reward of 0 if the movie is not watched; maximizing rewards means
reaching our goal.
Uncertainty: For each movie we have, we don't know whether the user will watch the movie
or how often the user will watch it; in other words, we don't know the true reward associated
with each action.
Estimation: To maximize rewards, we need to estimate the true reward of each action; we
will then select the actions, or recommend the movies to the user, that have the highest
estimated reward.

af://n271

This optimal action selection under uncertainty is called a multi-armed bandit. If you've ever
used a one-armed bandit slot machine in a casino, think of this as a slot machine with multiple
levers.

Each of these levers has an unknown true reward and each time we pull a lever, we receive a
reward that is sampled from an underlying statistical distribution with a mean and variance
(again, what the distribution looks like is unknown to us). Each lever has its own distribution from
which our rewards are sampled.

Concepts to remember: agent, environment,action, goal, reward, true reward, estimated
reward

A Shared Problem

For both sequential probabilistic state transitions and optimal action selection under uncertainty,
we have a similar problem:

how can we estimate the probability of transitioning into a specific state given a state, or
receiving a specific reward given an action?

How can we arrive at these estimates? Let's continue the movie recommendation example and
test our knowledge of supervised learning.

Solution

Supervised Approach

Continuing movie recommendation example, consider the following question:

Can estimating the probability that a given movie will be watched by the user be solved as a
problem of supervised learning?

To answer this, let's recap our knowledge of supervised learning:

Is this a problem of classification or regression?

Classification because we are interested in the probability of a categorical outcome,
whether or not a movie will be watched.

Do we have training data?

We can use the movies that the user has watched in the past as our training data.
Do we know what features we're looking for?

Features of interest in the data could be "genre", director", "lead actress", etc.

So, based on this quick check we can solve movie recommendation as a supervised learning
problem.

This is indeed true, but for a number of reasons a supervised approach won't lead to the best
solution.

Limits of a Supervised Approach

Taking a supervised approach to the movie recommendation problem faces several limitations:

Batch data: We cannot deal with new users who do not have a history of watched movies
as training a classifier requires a substantial batch of training data.
Offline learning: We cannot adapt fast to shifting user tastes; classifiers are often trained
offline so updated preferences of the user might not be taken into account.
Path dependency: We cannot deliver content to the user that is an "unknown unknown" for
the user but might be the user next favorite movie or genre, etc. because our classifiers

af://n574
af://n612
af://n119
af://n142

positively reinforce previous choices of the user, which might not have been perfectly
informed.

Towards an Alternative Approach

Let's return to the concept of a multi-armed bandit. Wouldn't it be feasible to estimate the true
reward of each lever simply through a trial-and-error experiment in which we pull each lever
multiple times over time and thus build up an estimate of the reward we received for each lever?
If we continue this experiment for a long-enough time, we should be able to obtain solid
estimates and narrow down the best levers.

Taking this approach of learning from interaction with an environment should also solve the
limitations of a supervised approach:

Starting from zero: To start our experiment, we do not need training data, as we build up
our training dataset over time by showing the user movies (pulling levers) and keeping track
of which movies were watched (estimating the true reward of each lever).
Online learning: As the user changes her preferences, this is immediately reflected in what
movies she decides to watch, which in turn immediately changes our reward estimates and
we can in turn start to pull the levers that return the highest currently known reward.
Exploration: Instead of always pulling the lever with the highest estimated reward
(reinforcing the users revealed preferences), we can occasionally pull a lever that currently
has a lower estimated reward but a weak estimate and which might over time, as the
estimate improves, also return a reward that is even higher than the current highest
estimated reward.

This approach is called reinforcement learning. In situations where you only care about starting
from scratch, adaptability and innovation, reinforcement learning is your go to framework.

4 Reinforcement Learning

Reinforcement learning is best described in the words of two founders of the field, Richard
Sutton and Andrew Barto:

Reinforcement learning is learning what to do—how to map situations to actions—so as to
maximize a numerical reward signal. The learner is not told which actions to take, but
instead must discover which actions yield the most reward by trying them. In the most
interesting and challenging cases, actions may affect not only the immediate reward but
also the next situation and, through that, all subsequent rewards. These two characteristics
—trial-and-error search and delayed reward—are the two most important distinguishing
features of reinforcement learning.

Trial-and-error search over delayed rewards is an incredibly powerful framework for solving
problems; especially when no optimal solution to the problem is known.

Prominent applications of reinforcement learning include:

having a toy helicopter perform sophisticated stunts
beating world-champions in games like Chess, Go, and StarCraft
any task that requires sophisticated navigation or strategy creation

To apply reinforcement learning algorithms to a problem, we need to first formalize the problem
as a Markov decision process.

Markov Decision Process

af://n174
af://n176
http://%20http//incompleteideas.net/book/bookdraft2017nov5.pdf
af://n686

A Markov decision process is a model of decision-making under uncertainty, where the outcomes
of decisions are partly determined by the agent and partly random.

Drawing on the formalization we have established so far, you can think of a Markov Decision
Process as the combination of Markov chains, in which we care about estimating the probability
of a transition from one state to the next, and multi-armed bandits, in which we care about
estimating the unknown rewards associated with a set of actions.

In a Markov decision process:

an agent interacts with an environment, which can be exhaustively decomposed into a set
of states
the agent has to achieve a goal, which can be exhaustively decomposed into a numerical
reward signal
the agent is guided by a policy, which describes the method that the agent uses to estimate
the rewards associated with each state-action pair (reward given an action performed in a
given state).

For Markov decision processes, we again assume that the Markov property holds, we assume
that the future is independent of the past given the present.

We can visualize a Markov decision process as follows:

Figure 2. A Markov decision process

When we look at reinforcement learning problems, this is the fundamental process underlying
the problem.

A Simple Reinforcement Learning Example

Let's look at a simple example of a reinforcement learning problem: pathfinding in a 15-grid
world.

af://n928

Figure 2. A 15-grid world

Here's the problem specification:

Agent: the agent is an autonomous car that has four actions available to it (up, down, left,
right)
Environment: the environment encompasses 15 grids; the agent moves from grid to grid
Goal: the agent's goal is to reach the grid marked as "Goal"
Reward: when entering the grid marked as "Goal", the agent receives a reward of 100
Policy: here we ignore how the agent evaluates the state-action pairs to evaluate its optimal
actions

Through reinforcement learning, we want the agent to figure out the shortest path to the goal.

Policies

When we talk about different reinforcement learning algorithms, we're talking about different
policies, or ways in which the agent can estimate the goodness of a state-action pair.

There are many different ways of evaluating state-action pairs and all of them lie beyond the
scope of this course.

Instead, we'll look at a simple policy that can be used to solve multi-armed bandit problems,
which are Markov decision processes with one state.

Specifying a Multi-Armed Bandit

Let's define a multi-armed bandit with eight levers (actions) as follows:

All of these actions have the same variance but different mean rewards. We can see that action 7
is the optimal action as it has the highest mean reward (0.8).

Solving with Epsilon-Greedy

Epsilon-greedy (or e-greedy) is the most basic policy for solving a multi-armed bandit problem.
This policy is defined around the variable epsilon, which states the agent's exploration rate, or
the probability that the agent will not exploit the action with the current known best reward but
explore another random action. This the most basic way to solve the trade-offs between
exploiting a local optimum and discovering the global optimum that we discussed in the first
lecture.

af://n958
af://n967
af://n975

We estimate the true rewards of each action through a simple average: we take the cumulative
reward received for an action and divide by the number of times that the action was performed.

Epsilon-Greedy in Action

Let's look at what happens when we apply different epsilon-greedy agents (with a different
exploration rate) to the multi-armed bandit we specified.

We let the agents perform 5000 actions.

Figure 3. Actions selected by two different epsilon-greedy agents

Figure 4. Average reward received by each agent for each of the 5000 actions

af://n989

Figure 5. Average reward received by each agent after 5000 episodes

5 Human-in-the-Loop Reinforcement Learning

Reinforcement learning is a powerful technique but it comes with many unexpected failure
modes that we often need human supervisors to fix.

In this section, as an exercise, we look at two of these failure modes and discuss how humans can
fix them.

We look at reward gaming and negative side effects.

af://n994
af://n699

	Overview
	1 Auditing Algorithms
	Auditing in Non-Cooperative Environments
	Observed Behavior
	Black-Box Testing

	2 Case: Auditing Google's Search Algorithms
	3 Auto-Completion and Recommendation
	Overview
	Formalization
	Sequential Probabilistic State Transitions
	Optimal Action Selection Under Uncertainty
	A Shared Problem
	Solution
	Supervised Approach
	Limits of a Supervised Approach
	Towards an Alternative Approach

	4 Reinforcement Learning
	Markov Decision Process
	A Simple Reinforcement Learning Example
	Policies
	Specifying a Multi-Armed Bandit
	Solving with Epsilon-Greedy
	Epsilon-Greedy in Action

	5 Human-in-the-Loop Reinforcement Learning
	

