

CAPS Notes - Lecture 1

Learning and Decision-Making

Leo Klenner, Henry Fung, Cory Combs

Last updated: 10/24/2019

Overview

This course is about how machines - from single algorithms to autonomous agents - make
decisions. The course explores how generalists, working together with specialists, can guide
decision-making to ensure that the decisions machines make are "good".

What does it mean to make a "good" decision? That's one of the themes we begin to unpack in
this lecture.

Lecture one is a primer on algorithmic decision-making:

What is an algorithm?
How do algorithms that train on data (i.e. learn) differ from those that don't train on data?

We also explore, at a foundational level, how the decision-making of algorithms compares to that
of humans:

How can we conceptualize the different ways in which algorithms and humans make
decisions?
How can we use an understanding of such differences to ensure that deploying an algorithm
results in "good" decisions?

af://n18
af://n34

 Human-based Ideal Rationality-based

Reasoning-based Systems that think like humans Systems that think rationally

Behavior-based Systems that act like humans Systems that act rationally

Type Information Computation Time Frequency Desirability

Perfect
rationality

Yes No Yes
Rarely
exists

High

Calculative
rationality

Yes Yes No
Often
exists

Low

Bounded
optimality

Yes Yes Yes
Often
exists

Depends on
the bounds

1. Definitions and Background of AI

Definitions

AI

To talk about AI, we first need to define it. Based on [1, 2], we can outline four possible definitions
of AI, all of the form "AI is the field that aims to build..." The definitions can be read in two-
dimensions. One dimension is whether the goal is to match human performance or ideal
rationality. The other dimension is whether the goal is to build systems that reason or systems
that act (without reason).

Table 1: Overview of four definitions of AI

Each definition reflects an approach within AI research and each comes with its own conceptual
challenges.

In this course, we follow [2] and define AI as "systems that act rationally".

Adopting this definition brings about a fundamental challenge concerning the type of rationality
entailed in "systems that act rationally". If this definition of AI forces us to interpret "rationally" as
"perfectly rational", then we run into a host of issues, from technical ones, such as how we can
make sense of a system's decisions if they don't appear to be goal-directed, to ethical ones, such
as whether each decision of the system must be seen as "good".

To clarify this aspect, we need to understand what different types of rationality we can pursue
with AI.

Rationality

Adopting the definitions of [3], we can differentiate between three types of rationality:

Perfect rationality, or the capacity to generate maximally successful behavior given the
available information
Calculative rationality, or the capacity to compute, in principle, the perfectly rational
decision given the initially available information
Bounded optimality, or the capacity to generate maximally successful behavior given the
available information and computational resources

af://n34
af://n35
af://n36
af://n56

Table 2: Overview of differences between types of rationality

Table 2, above, further differentiates the types of rationality based on five variables:

constraints on information
constraints on computation (either compute power available or program specification)
constraints on time (deadlines for making a decision)
frequency (how often the type of rationality can be observed for real-world systems)
desirability (how desirable it is to have a system of this type of rationality)

To understand why calculative rationality might not be desirable, consider a chess program that

choses the "right" move but takes 105 times too long to make it.

How does this distinction help us adopt the definition of "systems that act rationally"? When we
talk about AI, we assume that a system's decisions are subject to bounded rationality.

Agent and Environment

Taking on the definition of bounded rationality, we know that the decisions we analyze are
subject to two set of constraints:

The constraints of the agent that makes the decisions, arising from how the agent is
specified in terms of the algorithm that it computes and the resources it has to perform this
computation.
The constraints of the environment in which the decisions are carried out, arising from
aspects like imperfect information or other domain-specific features that might challenge
the agent's performance (e.g. through necessitating fast decisions).

There is also a third sets of constraints:

The constraints of the agent-environment interaction, arising from aspects like whether
the environment can return the feedback to the agent that the agent needs to make
decisions.

We will look more at agent-environment interaction later in the course, particularly in context of
reinforcement learning. For now, it is important to realize that, while engineers might know a lot
about the specification of the agent, robust decision-making also requires domain experts who
can understand the environment in which the agent's decisions take place.

Background

When we talk about AI, we do not necessarily mean algorithms that train on data (i.e. learn). We
could also be talking about rule-based systems, which make decisions by following sets of rules
specified by their developers. These systems "know" without having "learned" through
observations (i.e. data).

Systems that are based on machine learning techniques are a more recent development within
AI. Note that both options are in line with the definition of "systems that act rationally".

The central difference between the two options is that the decision-making of rule-based systems
is deterministic, whereas the decision-making of learning-based systems is non-deterministic.
(When we turn to neural networks later in the course, we will see that the training of a neural
network is non-deterministic, whereas once trained, a neural network can be deterministic.)

"Deterministic" here means that given the same input, the system will always return the same
output. With deterministic systems, we have a linear mapping of inputs to outputs.

af://n109
af://n121

Note, that this doesn't mean that rule-based systems are necessarily simple. In fact, they can be
extremely complicated - for example, they might contain multiple branches to account for
alternative courses of action. However, unlike machine learning systems, rule-based systems are
not complex: they are never greater than the sum of their parts.

"Non-deterministic" means that given the same input, the system will not always return the same
output. With non-deterministic systems, we have a non-linear mapping of inputs to outputs.

The period from 1987-1994 is often termed an "AI winter", in which the evident limitations of
deterministic "if-then" systems caused a slowdown in progress. In the late 1990s, progress picked
up, and by the late 2000s massive advancements were achieved due both to the development of
new training algorithms and the increasing availability of extremely large datasets on which to
train. Non-deterministic systems were at the center of the deep learning revolution. We will
discuss some of these algorithms and related developments later on.

The non-deterministic nature of machine learning leads, however, to a number of problems for
implementing this technology in practice. Among others, these problems concern transparency,
bias, predictability, and safety. We will address these problems as key themes throughout the
course.

2. Applications and Risks of AI

Applications

AI has applications across many domains, from games to financial markets to strategy. Here, we
briefly review applications of AI in financial markets, historically one of the richest domains of AI
implementation.

AI in Financial Markets

Here is a short timeline of AI in financial markets:

1970s: rule-based algorithms start to execute trades
1975: creation of the first index fund, using rules to track the components of financial
market indices
1990s: creation of exchange-traded funds (ETFs), which use rules to automate specific
investment strategies, and of quantitative funds, which drive the use of advanced algorithms
in financial markets
2010s: increasing focus on machine learning within quantitative funds, leading some funds
to switch from hypothesis-driven to data-driven investment approaches

Simple example of deterministic decision-making:

whenever A is true, B is assigned the value 2

if condition A is True:

 then set variable B = 2

Simple example of non-deterministic decision-making:

whenever A is true, B is assigned one of the possible even values between 0

and n

if condition A is True:

 then set variable B = (choose random even number from range (0, n))

af://n133
af://n134
af://n136

Type Primary function
Primary
product

Human Create strategies Mutual funds

Rules-based
Execute trades, or mimic human strategies and
execute trades

Index funds

Human plus
algorithm

Algorithms perform data analysis, humans select
trades

Quant funds

Machine learning Create and execute strategies Quant funds

Within this brief history, we can differentiate between four different types of agency in financial
markets:

Table 3: Overview of differences types of agency in financial markets

Each type of agency comes with its own patterns of decision-making; for example, rule-based
automated execution of trades is faster than human execution but bound to human-identified
processes, and machine learning strategies may outperform some humans but lead to the
creation of strategies that are opaque to humans. We will return to the associated risks later on.
First, we explore the impact of algorithms on financial markets.

To understand the impact of AI on financial markets, we can, as a proxy, look at the allocation of
U.S. public equity assets based on 2019 data:

Figure 1: % of U.S. Public Equity Asset Holdings worth USD 31 trillion, adapted from [4]

Figure 1 shows that with 35.1% percent of holdings, automated funds are the dominant
management solution within the U.S. public equity market, exceeding the holdings of human-
managed funds by more than 10%.

Next, we want to understand the balance between rule-based strategies and machine learning
strategies within automated funds:

Figure 2: % of U.S. Public Equity Asset Holdings worth USD 31 trillion, adopted from [4]

Figure 2 shows that of the total U.S. public equity asset holdings, only 2.4% are in quant funds, so
in principle only a maximum of 2.4% would have exposure to machine learning-based decision-
making. Given the interconnectedness of financial markets, this means that risks related to
machine learning still matter. However, we also need to consider risks that come from rule-based
decision-making.

Risks

The risks associated with AI are manifold. A separate field, called AI safety [5, 6, 7], is dedicated to
managing these risks. Here, we look at a small subset of risks, on which we will expand
throughout the course.

Machine Learning-Specific Risks

Note that all of these risks are human-facing.

Overconfidence and mistrust: Results discovered through machine learning might be
spurious [8], meaning that they are based on an artificial correlation between unrelated
covariates, especially in high-dimensional datasets. It can take time for the spuriousness to
become apparent, or it could even go undetected if not properly audited; hence, there is a
risk of initial human overconfidence when working with relevant algorithms. At the same
time, there might be persistent mistrust in such algorithms among key stakeholders even if
results turn out to be non-spurious. This is often where transparency and explainability
become paramount concerns.

Lack of data oversight: Large datasets are required to train machine learning algorithms,
but simply "having big data" isn't enough. There are numerous risks associated with lack of
human data oversight. First, even if datasets appear reasonably large enough, their size
might not truly be sufficient to completely train an algorithm, which can result in suboptimal
performance. This is particularly the case if a dataset contains many observations of one
feature or variable but very few of another, e.g. normal credit card activity vs. suspicious
credit card activity. Second, training an algorithm on a dataset that is too large for the
algorithm might result in the algorithm overfitting, i.e. learning oversimplified behavior that
will not map to new, real-word data. Third, poorly selected datasets can lead to bias and
"garbage in, garbage out" scenarios, such as when a system is designed to simply use the
"best" correlation among uncorrelated features. Fourth, adversarial examples [9], i.e. data
known and selected to distort system outputs, may be injected into the training data,
leading to corrupted performance of the algorithm. This is a particular challenge in online
natural language processing systems, including in chatbots.

af://n178
af://n180

Lack of continuous adaptation: Environments like financial markets are in constant flux
and humans must constantly keep learning to succeed across these changes. Once an
algorithm has been trained and deployed, it might not take long before the training dataset
has become outdated and the algorithms performance degraded. On the other hand,
allowing the algorithm to learn continously throughout its deployment as well brings back
the challenges of human oversight over the training data, compounded with the difficulty of
management now being real-time rather than in a test environment.

Lack of transparency and explainability: Advanced machine learning algorithms perform
complex optimization processes to achieve their objectives. These processes are often
opaque to humans and don't come with meaningful explanations attached. Although the
algorithm might make the "right" decision, the humans who are working alongside the
algorithm might not be able to make sense out of this decision, and consequently might
remain incapable of developing appropriate responses on their end. This can lead to a joint
performance failure.

A prominent example of a lack of transparency and explainability comes from the world of
the strategy game Go. In match 2 against Lee Sedol, the 9 dan-ranked Go player (one of the
world's top-ranked), DeepMind's machine learning-based Go-bot AlphaGo made its famous
move 37 that baffled professional commentators, forced Lee to leave the room, and secured
AlphaGo its second win.

The live-feed from the commentators [10] provides detailed insights into how humans might
struggle to make sense of a decision made by a machine learning algorithm:

That's a very surprising move. I thought that was a mistake. I thought it was click miss.
Exactly, if we were in online Go, we would call it a 'clicko'.

Figure 3: In Match 2 against Lee Sedol (white), AlphaGo (black) makes its game-changing move 37

First, the commentators are convinced that AlphaGo's move must have been a mistake or
technical error. Being unable to make sense out of the decision, they start to doubt their
environment, which brings back the challenges of mistrust mentioned earlier.

Next, the commentators compare the decision to the alternatives they considered and
understand.

Yeah, it's a very strange move. Something like this [changes black's position on the
board] would be a more normal move and then this [moves white's position on the
board] is how white would respond.

Finally, after seeing the ambigious response of another human impacted by this decision,
the commentators resign themselves to making a hedged statement and emphasizing that
they would need more time and information about how the game will proceed to make a
more definite statement.

Lee has left the room. He left the room after this move. Just to recover from this move.
It's a very surprising move. I don't know whether it's a good or a bad move at this
point.

How can we manage these risks? From managing overconfidence to managing a lack of
transparency, we have seen that building a response to risks associated with machine-
learning takes time. However, in real-time environments, time is often highly constrained.

Ecosystem-Specific Risks

In this section, we briefly look at a risk associated with rule-based decision-making: the fast and
automated execution of decisions.

The decision-making of machine learners might take place on top of an infrastructure of fast rule-
based execution, eliminating the time humans would need to meaningfully respond to challenges
like mitigating the opacity of a move 37. This makes fast rule-based execution, paired with human
stakeholders' comparatively slow response time and heterogenous information, an ecosystem-
specific risk for machine learning-based decision-making.

Complexity and speed: Software development processes are complex. They often involve
multiple versions of a program existing in the same codebase. The goal of these processes is
often speed. Engineers build a program that, among other things, works faster than other
programs. The risks from development complexity and speed of execution came together in
a 2012 stock trading disruption at Knight Capital Group that caused the financial services
firm to lose 70.60% of its market value of USD 1.5bn over two days for an error that was
discovered and fixed in less than an hour.

Figure 4: Initial drop in the stock price of Knight Capital Group following a trading disruption on
August 1, 2012

A detailed account of this event of how Knight enabled the fatal trading disruption through
careless changes to its software is given in [11]. Here, we represent the changes to Knight's
case in four steps across Figures 5 and 6. Blue lines represent active connections between
the components of Knight's trading program, grey lines represent inactive connections.

af://n204

Figure 5: Step 1 and 2 of the changes to Knight's codebase

Step 1: Knight has a functioning trading system that receives orders, processes their
execution, controls this execution, and sends the processed orders to markets. Through
development bad practice, an old algorithm built only for experimental purposes
remains part of the codebase of the trading system, although it cannot be activated
under the current system specification. The algorithm is designed to buy high and sell
low. Although the algorithm currently sits as "dead code" in the codebase, it retains the
functionality to send orders to markets.

Step 2: Knight makes updates to the control component in its codebase. These updates
bring improvements but through further development bad practice detach the control
from the experimental algorithm.

Figure 6: Steps 3 and 4 of the changes to Knight's codebase

Step 3: To make its system compatible with a new market, Knight builds a new
execution component for its system. These changes are made under severe time
pressure and introduce a critical development flaw. The code for the new execution
component repurposes the activation code of the experimental algorithm. As a result,
the experimental algorithm can now receive orders. It does not yet receive these orders
because the new execution system is still higher up in the hierarchy of the program, so
all the input signals are fed into the execution component.

Step 4: The updates to Knight's system go live on eight servers and Knight starts
receiving orders. However, under time pressure, one of Knight's developers has
forgotten to update one of the eight servers correctly. Hence, this server does not have
access to the new execution component. On this server, the input signal, i.e. the orders
that Knight receives from its clients, are now fed into the experimental algorithm, which
starts to buy high and sell low without being checked by any controls. After less than an
hour, developers locate the error and shut the server down. However, they made the
fatal flaw of reverting to the old code on all eight servers and take the complete system
live again. As it turned out, the experimental algorithm was now activated on all eight
servers. The cumulative losses from the trades were irreversible and ended up reducing
Knight's stock price by 70%.

The story of Knight capital shows the multiple risks that arise from different patterns of
decision-making - in this case, the rapid execution of an algorithm paired with the adaptable
but sometimes inconsistent decision-making of human developers. In the next section, we'll
look more at human decision-making from the perspective of human situational learning.

As a last note, reading through this section and looking at Figures 5 and 6, you have
familiarized yourself with two important concepts, those of an algorithm and a program:

An algorithm is "a group of components talking to each other in sequence", where
each component can be a simple instruction like "when A is True, then do B" or a more
sophisticated function like "do convex optimization for A".
A program is also "a group of components talking to each other in sequence", but
where each component is an algorithm.

3. Human Learning and Decision-Making

We'll now discuss the case study for this session, "Learning in a Counterinsurgency Team".

Jason Amerine:

Learning from instruction:

Amerine mentions the importance of instructors during training.

You get out of these courses and sometimes you have instructors that take what they
teach very seriously and other times you don’t.

Rules and applying them to new environments:

Amerine mentions that the transition from training to deployment is linear.

I found was that every major lesson I have learned throughout my career, whether it
was in the Q Course [Army Special Forces Qualification Course] or Ranger School, I
mean, everything that I was taught in the school house, I applied over there.

All the major muscle movements during the campaign we really had been taught.

Exception handling and continuous learning:

Amerine mentions one core exception to the linear transition from training to
deployment and how it was solved by generating new rules of behavior.

You had certain unique areas, when we talk about the Horse Soldiers ... I mean that
was something you couldn’t have foreseen and literally was an act of God that we had
the right officer there who could teach his people how to ride.

af://n231
https://capsseminar.github.io/static/Case1.pdf

Mark Nutsch:

Rules and applying them to new environments:

Nutsch mentions that the transition from training to deployment is linear but focuses
on process over instructors.

But even in that new situation, the guys kept going, ‘Hey, we have been here before,
remember Special Forces training, remember Robin’s Sage at this phase of insurgency,
you know as that would progress, remember that.’

Adaptation and learning how to learn:

Nutsch describes training as learning how to learn, so the team can adapt fast to
changes in the environment and its behavior reflects new information.

But the sergeants and I, coming back as we’re talking about this, we did the things you
do in training. Each day we would do lessons learned, an internal AAR [After Action
Report], whether it was five minutes or fifteen minutes, sit down and go ‘Damn, what
nearly killed us today? How do we make sure that doesn’t happen again? You know,
how do we survive the next hour? And how do we win?’

I would have to say, even in our mission, we were the students.

Breadth of relevant training:

Nutsch mentions that the relevant training for him extended across his entire life and
career.

You relied on that training that you had, the leadership lessons, people, mentors, that
talked to you, every aspect of my career up to that point, to include character building
events I had as a teenager through high school and college, all of that came to that
focal point in my life on that battlefield.

Pattern matching and learning with imperfectly labeled data:

Nutsch describes the process of matching patterns based on a different local
information system.

They couldn’t read a map but they could describe to you passionately ‘It’s this village,
don’t you understand? It’s this village right over here. It’s this guy, he’s the one we’re
after.’

Core themes:

Application of rules vs adaptation
Learning from a supervising instructor vs learning from interaction with the environment
Learning through guidance vs learning through trial-and-error
Transfer of knowledge across domains vs learning how to learn

Differences between Amerine and Nutsch:

Amerine emphasizes the value of having knowledge that generalizes across environments
Nutsch emphasizes the value of learning how to learn in training, so that even without
knowledge about a new environment, fast adaptation is possible
Amerine emphasizes instructor-led learning
Nutsch emphasizes process-driven learning

af://n313

4. Types of Machine Learning

In this section, we give a very concise, high-level overview of the major types of machine learning,
which we will explore in detail over the next three sessions.

Supervised learning

Supervised learning is learning from labeled data, where the labels are provided to the
algorithm by a human and the algorithm learns to apply these labels to new data, e.g.
for prediction.

Unsupervised learning

Unsupervised learning is learning from data that does not have labels, for the purpose
of identifying features that can be used to group or cluster the data, e.g. for pattern
detection.

Reinforcement learning

Reinforcement learning is about learning through trial and error from interaction with
an environment what the best sequence of actions is to achieve a specified goal, e.g.
for autonomous control.

Meta-learning and transfer learning

Meta- and transfer learning are at the forefront of current AI research and concern how
algorithms can learn how to learn and quickly adapt previously learned behavior to new
environments.

As we explore these learning types over the coming sessions, consider their roots in alternative
modes of human learning - for example, those that Amerine and Nutsch discussed. Each type of
machine learning was developed around a particular paradigm of how learning can occur,
intentionally rooted in human experience. Just as with human learning, machine learning types
can be coordinated within a given program or system to significantly bolster performance,
leveraging strengths and covering weaknesses of algorithms of a given type. We will focus on
each learning type in turn, but at the end of the course will return the spotlight to real-world
deployment possibilities integrating these technologies for optimal effect.

5. Learning and Optimality

If we search for a single unified expression of how each type of machine learning works, it would
be mathematical optimization. Here, we give a brief overview of optimization in a mathematical
sense and then focus on how optimization interacts with policy.

In simple mathematical terms, when we learn a task, our goal is to minimize the rate of errors.
Equivalently, we can state that our goal is to maximize the rate of success.

Both minimizing error and maximizing success sound intuitive but there are several other
elements we need to consider to understand optimization.

The main element is that we should understand minimization and maximization in a spatial
sense. Optimization is a search across a continuous space (representing the space of possible
decisions) for the minimum or maximum value in this space. For an example of such a search
space, see Figure 7 below.

af://n313
af://n338

Figure 7: Search space of an optimization problem with local and global maxima

When we start to learn, we typically start at a random point in this space and then explore the
space over time to find its respective minimum or maximum.

In this search, we need to differentiate between local optima and global optima. Local optima
are optimal points that are optimal only for a subregion of the space. Global optima are optimal
points for the entire considered space. Sometimes as we explore a space, the learner may get
stuck in a local optimum, unable to tell whether a more optimal space exists. There are
numerous mathematical tools to resolve this, including the addition of constraints that reduce
the search space and facilitate the learner's search.

When we discuss constraints, we need to differentiate between two uses of the term "constraint":

Constraints that change whether the algorithm can solve the problem, e.g. funding, the
computational resources available, and engineer availability. We can call these logistical or
real-world constraints; they are typically beyond our direct control.
Constraints that change how the algorithm solves the problem, e.g. removing certain optimal
or non-optimal decisions from the search space. We can call these mathematical constraints,
understanding that these are imposed by the developers for a particular purpose; they are
in the developers' control.

The usage is usually clear from context, but when bridging the gap between policy makers and
engineers, it is important to be sensitive to the distinction and clarify when two sides may mean
different things. In our course discussions, when we say that we "add constraints", we are talking
about mathematical constraints that change how the problem gets solved.

Note, that both types of constraint bring aspects of policy and strategy into the calculus of
optimization. The reason for this is simple:

Making the "right" decision requires a consistent definition of what constitutes an error or
success for a selected task. Both types of constraint can influence these definitions, in
different manners.

Why do we need to be consistent in stating what we mean by error or success?

We need to be consistent in defining what we want to optimize because if we don't guide the
learner in a consistent way, it will find all kinds of unexpected and undesired solutions within the
wide space that it searches. Some of these solutions may run counter to what we wanted the
algorithm to learn in the first place.

We can describe the tradeoffs around the target specification for optimization with the following
terms, as presented in [12]:

Ideal specification describes the "wishes" or intentions of the system designers, which
correspond to the hypothetical description of an ideal system.

Design specification describes the "blueprint" of the system, corresponding to the
specifications that the designers actually use to build the system.
Revealed specification describes the actual "behavior" exhibited by the system, i.e. what
actually happens

To understand the challenges of consistent target specification, consider the following real-world
example:

In a computer game version of a boat race, multiple bonus packages that provide points and
turbo boosts are placed across the racetrack from start to end. You want to train an
algorithm that learns how to win the race. Maximization requires numerical values, which
the points associated with the packages conveniently provide. Thus, to achieve the objective,
you tell the algorithm "maximize bonus points", assuming that this maximization will lead to
the fastest traversal of the racetrack from start to end.

Figure 8 shows what happened when researchers implemented the above logic for the game
CoastRunners [12]. (It is best viewed as an animation.)

Figure 8: Faulty optimization in the CoastRunners game

Instead of finishing the race, the machine learner found a laguna in which "turbo boosts" are
spawned in regular intervals. The learner discovers that circling through these boosts - ad
infinitum - yields a higher bonus score than simply following the racetrack from start to end. To
time the respawn of the "turbo boosts", the learner circles through the lagoon, in the process
crashing into other boats and parts of the environment. The algorithm never completes the race.
However, it does achieve a substantially higher score than the boats that finish the race. Thus, the
revealed specification differs radically from the design and ideal specification of the algorithm.

How do we guard against (metaphorical) boats that never actually finish the race? To ensure that
optimization is consistent with policy intentions and aligned with human values, both generalist
and domain experts can provide invaluable guidance to the specialists who develop the relevant
algorithms, especially in complex real-world environments. This cooperation, in turn, requires the
capacity to translate between these stakeholders and across disciplinary lines.

What does all of the above tell us about "good" decisions? To start with, we can assert the
following:

While all "good" decisions are optimized, not all optimized decisions are "good".

"Good" is a joint product of policy, ethical, and technical considerations. The coming sessions
introduce key technical possibilities and risks of various machine learning technologies, tying
them to respective ethical and policy issues. But as new systems continually evolve, it is essential
to continue exploring rising trends. These lectures are first steps toward learning how to learn
about AI.

References

[1] Steward Russel and Peter Norvig. 2019. Artificial Intelligence: A Modern Approach. Available
at: http://aima.cs.berkeley.edu/

https://miro.medium.com/max/478/0*UoBrrtrY2rx2SvXr
af://n380
http://aima.cs.berkeley.edu/

[2] Selmer Bringsjord and Naveen Sundar Govindarajulu. 2018. Artificial Intelligence. Available at:
https://plato.stanford.edu/entries/artificial-intelligence/

[3] Stewart Russel. 2015. Rationality and Intelligence: A Brief Update. Available at: https://people.
eecs.berkeley.edu/~russell/papers/ptai13-intelligence.pdf

[4] The Economist. 2019. The stockmarket is now run by computers, algorithms and passive
managers. Available at: https://www.economist.com/briefing/2019/10/05/the-stockmarket-is-now
-run-by-computers-algorithms-and-passive-managers

[5] Jan Leike et al. 2017. AI Safety Gridworlds. Available at: https://arxiv.org/abs/1711.09883

[6] Paul Christiano and Greg Brockman. 2016. Concrete AI Safety Problems. Available at: https://o
penai.com/blog/concrete-ai-safety-problems/

[7] DeepMind's AI Safety Team, see: https://deepmind.com/safety-and-ethics

[8] Jianquing Fan and Wen-Xin Zhou. 2016. Guarding Against Spurious Discoveries in High
Dimensions. Available at: http://www.jmlr.org/papers/volume17/16-068/16-068.pdf

[9] Ian Goodfellow et al. 2017. Attacking Machine Learning with Adversarial Examples. Available
at: https://openai.com/blog/adversarial-example-research/

[10] Lee Sedol vs Alpha Go. 2016. Video available at: https://www.youtube.com/watch?
v=JNrXgpSEEIE

[11] Bishr Tabbaa. 2018 The Rise and Fall of Knight Capital - Buy High, Sell Low. Rinse and Repeat.
Available at: https://medium.com/dataseries/the-rise-and-fall-of-knight-capital-buy-high-sell-low-
rinse-and-repeat-ae17fae780f6

[12] Pedro Ortega et al. 2018. Building safe artificial intelligence: specification, robustness and
assurance. Available at: https://medium.com/@deepmindsafetyresearch/building-safe-artificial-
intelligence-52f5f75058f1

https://plato.stanford.edu/entries/artificial-intelligence/
https://people.eecs.berkeley.edu/~russell/papers/ptai13-intelligence.pdf
https://www.economist.com/briefing/2019/10/05/the-stockmarket-is-now-run-by-computers-algorithms-and-passive-managers
https://arxiv.org/abs/1711.09883
https://openai.com/blog/concrete-ai-safety-problems/
https://deepmind.com/safety-and-ethics
http://www.jmlr.org/papers/volume17/16-068/16-068.pdf
https://openai.com/blog/adversarial-example-research/
https://www.youtube.com/watch?v=JNrXgpSEEIE
https://medium.com/dataseries/the-rise-and-fall-of-knight-capital-buy-high-sell-low-rinse-and-repeat-ae17fae780f6
https://medium.com/@deepmindsafetyresearch/building-safe-artificial-intelligence-52f5f75058f1

	Overview
	1. Definitions and Background of AI
	Definitions
	AI
	Rationality
	Agent and Environment

	Background

	2. Applications and Risks of AI
	Applications
	AI in Financial Markets

	Risks
	Machine Learning-Specific Risks
	Ecosystem-Specific Risks

	3. Human Learning and Decision-Making
	4. Types of Machine Learning
	5. Learning and Optimality
	References

